О курсе
С помощью этого курса Вы научитесь:
- Работать с SQL
Научитесь писать запросы, работать с данными в базе без переноса в таблицы, загружать данные и сохранять историю, работать с разными форматами файлов - Использовать Python и библиотеки анализа данных
Автоматизировать работу с большими массивами, получать данные из внешних источников, обосновывать выводы, сделанные на основании данных - Строить модели машинного обучения
Подготавливать данные и быстро строить на них ML-модели. Проверять гипотезы, строить рекомендательную систему и нейронную сеть, выявлять скрытые аномалии в данных - Использовать сложную математику для Data Science
Освоите необходимый математический аппарат для продуктивной работы с моделями данных, машинным обучением и нейронными сетями
Программа курса:
Блок 1: "Получение и подготовка данных: SQL"
- Основы SQL
- Обновление, добавление и удаление данных. Работа с таблицами
- Представления и хранимые процедуры. Особенности обработки транзакций
- Расширенные возможности SQL и основные ограничения
- Фильтрация данных и вычисляемые поля - практика (SELECT, SUM, AVG, GROUP BY, ..)
- Группировка данных, подзапросы и объединение таблиц - практика (INNER, LEFT, RIGHT, DISTINCT, ..)
- Обновление, добавление и удаление данных. Работа с таблицами (INSERT, UPDATE, DELETE, MERGE, FOREIGN KEY, ..)
- Работа с популярными программами (MySQL, SQL Server, Redash, Tableau)
Блок 2: "Python, мат.модели и обработка данных"
- Python: настройка окружения, базовые структуры данных и основные операторы
- Python: работа с файлами и форматированный вывод
- Python: пространства имен и области видимости, классы и объекты
- Python: инструменты функционального программирования
- Python: стандартные и сторонние библиотеки Python для анализа данных
- Основы линейной алгебры и теории множеств
- Методы математической оптимизации
- Основы описательной статистики
- Статистический анализ данных
Блок 3: "Построение Machine Learning моделей"
- Линейные методы, логистическая регрессия и SVM
- Деревья решений
- Линейная и полиноминальная регрессия
- Алгоритмы кластеризации
- Способы повышения качества модели
- Функции потерь и оптимизация
- Оценка точности модели, борьба с переобучением, регуляризация
- Улучшение качества модели
Блок 4: "Рекомендательные системы и обработка естественного языка (NLP)"
- Неперсонализированные рекомендательные системы
- Сontent-based-рекомендации
- Collaborative Filtering
- Гибридные алгоритмы
- Поиск по картинкам
- Сегментация изображений, детекция объектов
- Применение свёрточных нейронных сетей для задач сегментации и детекции
- Применение рекуррентных сетей в задачах обработки изображений
- Генеративные конкурирующие сети (GAN)
- Морфологический и синтаксический анализ
- Методы снижения размерности в векторной модели
- Информационный поиск
- Тематическое моделирование (LSA, LDA, HDP)
- Дистрибутивная семантика (word2vec, GloVe, AdaGram)
- Счётные языковые модели и вероятностные языковые модели. LSTM.
- Машинный перевод
- Генерация текстов (Natural Language Generation)
- Задача классификации в АОТ
Блок 5: Дипломная работа и помощь с трудоустройством
- Работа над дипломным проектом для портфолио
- Подготовка резюме
- Подготовка к собеседованию
- Финальная защита и консультации
Перспективы:
- Цифровой сертификат - Выпускники получают сертификат об успешном прохождении курса — что, вместе с дипломным проектом, будет хорошим аргументом при трудоустройстве
- Средняя зарплата от 165 000 ₽
- Помощь с трудоустройством и стажировкой